If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+40r-9600=0
a = 1; b = 40; c = -9600;
Δ = b2-4ac
Δ = 402-4·1·(-9600)
Δ = 40000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{40000}=200$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-200}{2*1}=\frac{-240}{2} =-120 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+200}{2*1}=\frac{160}{2} =80 $
| y-10.5=22 | | -4+2x=-30 | | 4x^2-2x=-x^2+3 | | 1/2(x+21)=-6 | | X57+90h-4/5=40/8 | | (r)(r+40)=9600 | | 33=a/3 | | -2x+3=0.5-7 | | x^2/10+3x/20=1 | | 6=15+p | | 24x=272.8 | | -2x-3=2x-1 | | 2(5y+2)=5(2y-5) | | -35-6x=31 | | 6x-2x-4x=24 | | 1/2=3/4v | | (x-3)÷4=x÷2 | | 2x=x^2+12 | | f=-8 | | 4.5=1.5y | | x+20+2x=-10-2x-5 | | -1/3(n=15)+-2 | | 3+7^x-1=10 | | (x-3)÷4=×÷2 | | 1/5v=5 | | -5-7m-m=8m-5 | | 6+t=10 | | -90+n•36=2 | | 3/4x+3=0 | | 2b-25(4)=3100 | | z/5+3=-335 | | -124=-76-32n |